<cite id="1rfpl"></cite>
<var id="1rfpl"><strike id="1rfpl"></strike></var>
<var id="1rfpl"><video id="1rfpl"><thead id="1rfpl"></thead></video></var><var id="1rfpl"></var>
<var id="1rfpl"></var>
<var id="1rfpl"></var>
<var id="1rfpl"></var>
<thead id="1rfpl"></thead>
<var id="1rfpl"><video id="1rfpl"></video></var>
<cite id="1rfpl"></cite>
邮箱登录 | 所务办公 | 收藏本站 | English | 中国科学院
 
首页 计算所概况 新闻动态 科研成果 研究队伍 国际交流 技术转移 研究生教育 学术出版物 党群园地 科学传播 信息公开
国际交流
学术活动
交流动态
现在位置:首页 > 国际交流 > 学术活动
High-Performance Software Development Challenges in the Post-Moore Era
2019-07-26 | 【 【打印】【关闭】

  Abstract: The end of Moore's Law scaling for VLSI technology implies that significant performance increases for future generations of processors cannot derive from increased transistors counts. Instead, hardware customization and more efficient use of hardware resources are expected to be primary means of performance improvement. Hence, the already challenging task of application software development will get even harder. Advances in software infrastructure such as compilers will be crucial to assist application developers achieve high-performance without loss of productivity and portability.

  A very fundamental challenge faced by compilers is data-locality optimization. The cost of data movement far exceeds the cost of performing arithmetic/logic operations on current processors, both in terms of energy as well as execution time. But while the computational complexity of most practically used algorithms is quite well understood, the same is not true of data-movement complexity. There is a need to develop new abstractions and methodologies, and create tools for characterization and optimization of data movement. This talk will discuss challenges and some promising directions in the quest to achieve the three desirables of performance, productivity, and portability in the development of high-performance software.

  Bio:

  Sadayappan is a Professor in the School of Computing at the University of Utah, with a joint appointment at Pacific Northwest National Laboratory. He was previously a Professor of Computer Science and Engineering and a University Distinguished Scholar at the Ohio State University. His primary research interests center around performance optimization and compiler/runtime systems for high-performance computing, with a special emphasis on high-performance frameworks that enable high productivity for application developers. He collaborates closely with computational scientists and data scientists in developing high-performance domain-specific frameworks and applications. Sadayappan received a B.Tech from the Indian Institute of Technology, Madras, and M.Sc. and Ph.D. from Stony Brook University, all in Electrical Engineering. Sadayappan is an IEEE Fellow.

 
网站地图 | 联系我们 | 意见反馈 | 所长信箱
 
京ICP备05002829号 京公网安备1101080060号
凯发k8,凯发k8国际,凯发娱乐官网 尊龙app下载,尊龙国际手机客户端app,尊龙人生就是搏手机版 凯时电游,凯时百家乐,凯时真人娱乐 环亚百家乐,ag百家乐,环亚真人娱乐 凯时真人娱乐 尊龙人生手机版,尊龙人生就是搏手机版,尊龙人生就是博旧版手机 尊龙博彩,人生就是博,人生就是博新版 ag视讯 环亚娱乐真人游戏,ag亚洲国际游戏,环亚娱乐亚洲最佳真人游戏平台 凯时ag,ag凯时娱乐,ag凯时官网 凯发娱樂,凯发娱樂下载,娱乐凯发下载 乐橙lc8真人,乐橙lc8真人娱乐,乐橙lc8国际娱乐 凯时|AG,凯时|KB,凯时|AG(Asia Gaming)优质运营商 亞美娱乐,亚美国际娱乐,亚美优惠永远多一点 ag凯发,凯发k8AG,k8凯发官网 亚美娱乐am8,亚美娱乐app下载,亚美娱乐在线 凯发真人,凯发真人娱乐-凯发k8国际真人版 w66利来娱乐,利来娱乐w66,利来娱乐官网 尊龙人生手机版,尊龙国际手机客户端app,d88尊龙手机版 尊龙d88人生就是博 乐橙lc8开户,乐橙平台登录,乐橙官网
<cite id="1rfpl"></cite>
<var id="1rfpl"><strike id="1rfpl"></strike></var>
<var id="1rfpl"><video id="1rfpl"><thead id="1rfpl"></thead></video></var><var id="1rfpl"></var>
<var id="1rfpl"></var>
<var id="1rfpl"></var>
<var id="1rfpl"></var>
<thead id="1rfpl"></thead>
<var id="1rfpl"><video id="1rfpl"></video></var>
<cite id="1rfpl"></cite>